In vivo CAR-M: Redirecting endogenous myeloid cells with mRNA for cancer immunotherapy

Bindu Varghese¹, Simone Mori², Stefano Pierini¹, Asen Bagashev¹, Yumi Ohtani¹, Rashid Gabbasov¹, Kayleigh Ross¹, Shuo Huang¹, Amanda Bona¹, Sherly Mardiana¹, Kate Slovik¹, Alison Worth¹, Karan Nagar¹, Robert Saporito¹, Chris Sloas¹, Michael Ball¹, Rehman Qureshi¹, Nicholas Minutolo¹, Kevin Tosh¹, Claudia Lee¹, Christine Lukacs², Lin Guey², Michael Klichinsky¹, Thomas Condamine¹

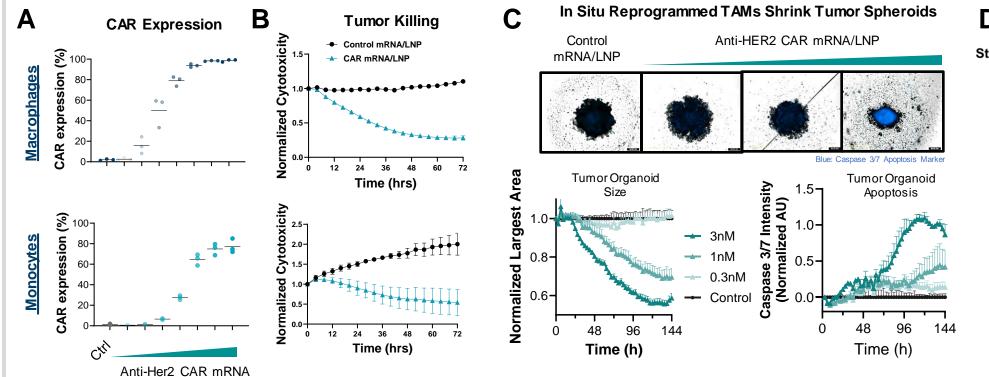

¹ Carisma Therapeutics Inc., Philadelphia, PA, USA; ² Moderna, Inc., Cambridge, MA, USA

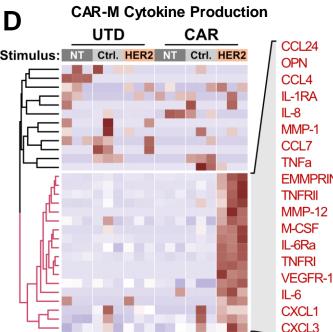
Introduction

Engineering myeloid cells for cancer immunotherapy

Macrophages, monocytes, and dendritic cells are sentinel cells of the innate immune system that play a central role in phagocytosis, inflammation, immune cell recruitment, and antigen presentation.

Ex vivo chimeric antigen receptor (CAR) macrophage and monocyte cell therapies have demonstrated robust anti-tumor immunity via targeted phagocytosis, cytokine/chemokine release, activation of the tumor microenvironment (TME), T cell recruitment, and epitope spreading in pre-clinical models.

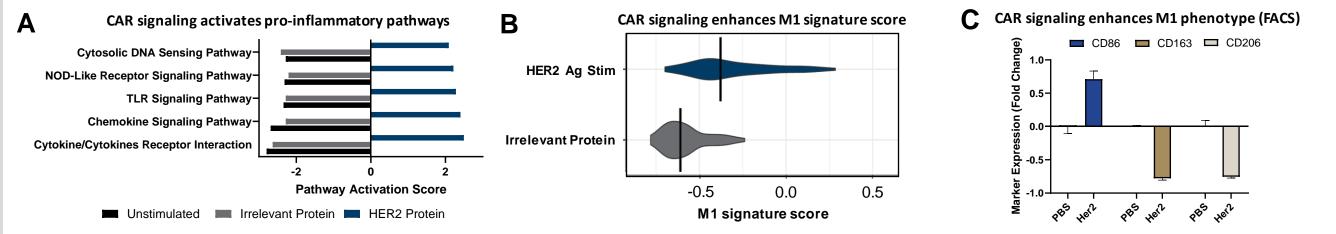


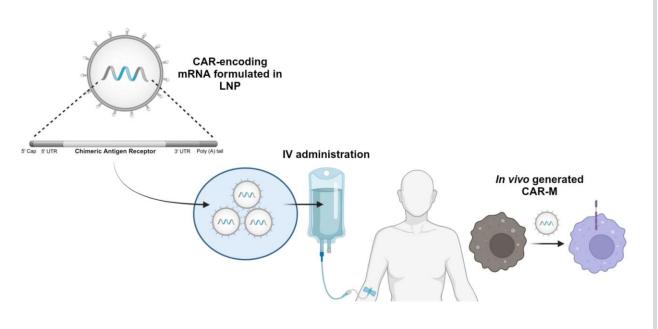

Objectives

Here, we describe a novel strategy to deliver modified

mRNA/LNP transfection generates highly functional CAR-M

Engineering human macrophages (top) and monocytes (bottom) with anti-HER2 CAR mRNA/LNP leads to titratable CAR expression (A) and targetspecific killing against HER2+ tumor cells (B). Direct in situ reprogramming of TAMs with anti-HER2 CAR mRNA/LNP in tumor spheroids leads to robust anti-tumor activity (C). mRNA/LNP CAR-M produce a repertoire of pro-inflammatory cytokines and chemokines upon target engagement (D).




Untransfected macrophage(UTD) or anti-HER2 CAR-M cvtokine secretion after no treatment (NT), irrelevant control protein stimulation (Ctrl), or HER2 stimulation

CAR engagement leads to CAR-M polarization toward M1 phenotype

Target antigen stimulation of human CAR-Macrophages in vitro leads to activation of pro-inflammatory transcriptomic pathways (A) and polarization toward the M1 phenotype based on gene expression (B) and flow cytometry (C). Macrophages were transfected with mRNA/LNP CAR then stimulated for 24 hours with an irrelevant protein or the target antigen HER2.

messenger RNA (mRNA) encapsulated in lipid nanoparticles (LNPs) to generate in vivo CAR-M (macrophages and monocytes), redirecting endogenous myeloid cells to exert targeted anti-tumor activity.

Results and conclusions

Human macrophages and monocytes engineered with CAR-encoding mRNA in vitro demonstrated high CAR expression and viability.

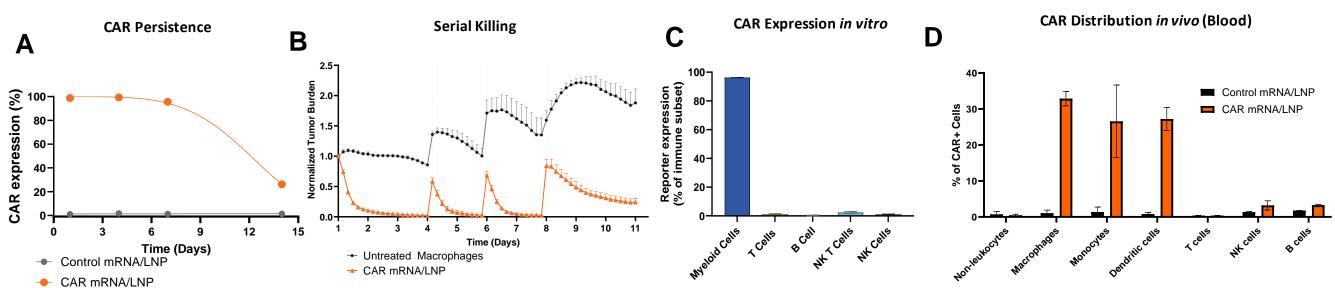
CAR expression conferred antigen specificity leading to target-specific proinflammatory cytokine secretion and tumor cell killing, with serial killing demonstrated upon tumor rechallenge.

CAR signaling upon antigen binding polarized macrophages toward M1, activating various pro-inflammatory innate immune pathways.

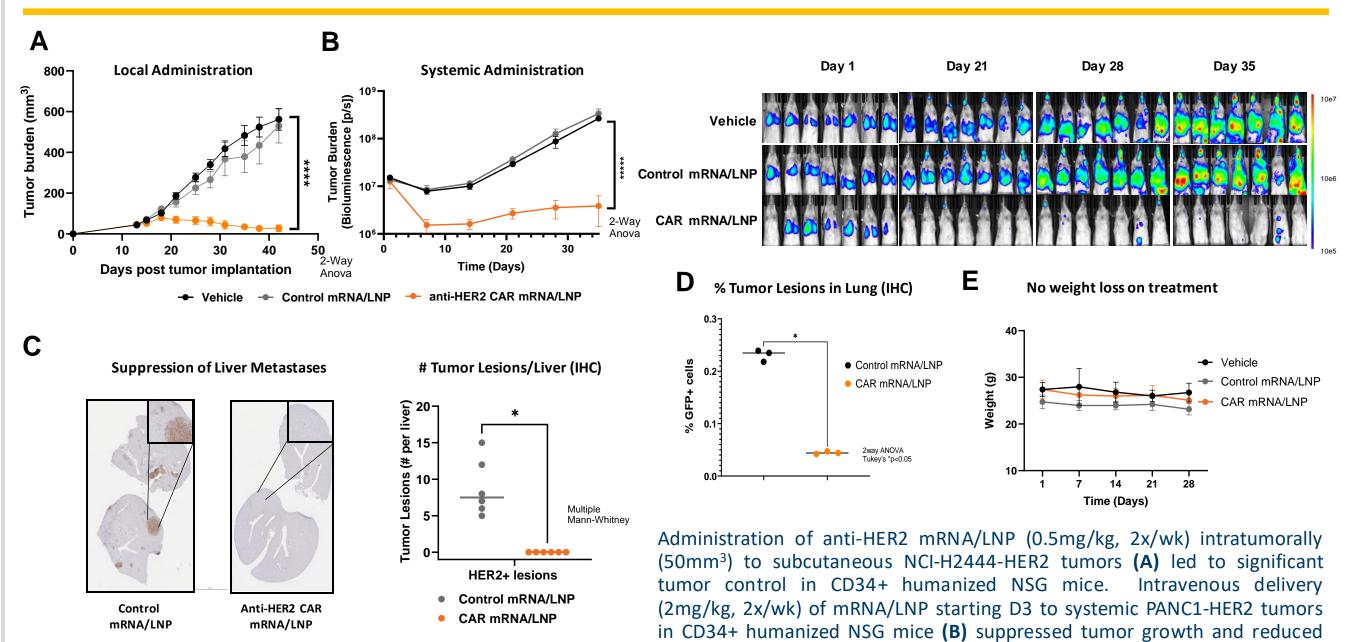
expression following mRNA/LNP administration was CAR predominantly observed in macrophages, monocytes, and dendritic cells compared to immune cells of non-myeloid origin in mice.

In vivo, regional and systemic administration of CAR-encoding mRNA led to significant tumor regression in subcutaneous and systemically disseminated metastatic solid tumor models, respectively.

Repeat administration of mRNA/LNP was well tolerated.


- ✓ CAR-M can be directly produced in vivo and directed against tumor associated antigens using mRNA/LNP technology.
- This in vivo CAR-M platform offers a novel off-theshelf solution to cancer immunotherapy and has

CAR expression and serial killing capacity following a single mRNA/LNP CAR transfection


Evaluation of CAR expression in vitro for 2 weeks (A). HER2+ tumor rechallenge assay shows mRNA/LNP CAR-M serial killing capacity (B).

mRNA/LNP administration preferentially transfects myeloid cells in vivo

mRNA/LNP delivery leads to preferential expression of CAR on myeloid cells in human PBMCs in vitro (C) or in Balb/c mice in vivo (D).

In vivo CAR mRNA/LNP treatment leads to significant tumor control

the potential to be applied to numerous target antigens and indications.

		(EOm
	HER2+ lesions	(50mi
		tumo
•	Control mRNA/LNP	
٠	CAR mRNA/LNP	(2mg,
		in CD

metastasis to both liver and lung (C, D). No changes in body weight (E) or any other clinical observations were reported in any groups.

Illustrations created with Biorender.com

Disclosures: SM, CL and LG are employees of Moderna, Inc., and may hold stock/stock options in the company.

